Archive for February, 2013

20 February, 2013

Wednesday, February 20th, 2013

Oh my, the delerious joys of becoming old, and having one’s body decompose whist one is still riding around in it.  I have a number of lower cervical and upper thoracic vertebrae that seem to have decided that the war has been lost.  They have surrendered, thrown down their arms, and started to trek home.  In practical terms, this seems to be that spine in the region of those vertebrae is seeming to turn to mush, and this is resulting in all sorts of pinched nerves.  And this leads to a lot of pain.  And as this is an ongoing “performance” the manifestions of I get to endure change more-or-less randomly.  So, a couple of days ago, I went out to fill our bird feeders and spread a little seed on the gound, mostly for the resident red polls and the huge visiting flocks of rosy finches.

Rosy Finch during the winter in Wilsall, MT.

Grey Crowned Rosy Finch.

Rosy Finches Feeding

Grey-crowned Rosy Finches in a Feeding Melee Around a Hanging Feeder Filled With Sunflower Seeds.


Three Spring Finches: Common Red Poll male (center) with a House Finch (male - left) and a Pine Siskin (male - right)

Common Red Poll male (center) with a House Finch (male – left) and a Pine Siskin (male – right)

I had finished this activity which really involved next to no work, and was walking down my drive way toward the house and my upper back gave a “twinge…”.  By the time I was in the house, maybe 30 steps later, I could hardly stand the pain.  Well, it seems I had better get used to it.   That was three days ago, and it has not gotten any less “interesting”.  At times in the past, I have had epidural injections of a blocking agent for an earlier manifestation.  When those symptoms first arrived I had been doing some heavy labor in our yard and figured I had injured my back that way.  So, we trundled me off to our physician and he referred me to the large magnet down the hall, and I had an MRI.  It showed that what was going on, and that it was a whole lot worse than a transient injury.  Since then, the pain has come and gone.  Until fairly recently, it was mostly ignorable.

I have presumed that at least part of the ultimate cause of this were the many small cases of the bends I got back in my diving days.  We did a lot of our initial diving by using  the old  1956 “U. S.  Navy” diving tables; the old, 60 feet at 60 minutes for no decompression, tables; furthermore these tables were modified by a healthy dose of “that’s close enough”, or “I need just a minute more”.  So we stretched the tables a tad, not a lot, just a bit.  But that stretching was done over (in my case) a lot of dives.  Research, of course, has since shown that such diving leads to a lot of cases of the bends.  I know I got a few minor cases of decompression sickness, aka “the bends”,  but they weren’t serious.  Or so I thought.  Now, I think those “hits”, in turn, have come back to haunt me with the later-in-life problems such as mine.   The MRI showed that while I have a few REALLY bad areas in my spine, the WHOLE spine is affected and in bad shape.  Unfortunately, they don’t have spine transplants yet.

Anyway…  the upshot is that I am not feeling all that mobile right now.  Ah, well, so what else is new?

What is new?  

I am starting to blog on the Reef2Rainforest website.   I will still keep blogging here, particularly for my “Ecological Observations From Northeastern Pacific Subtidal Habitats” series and my weekly or semiweekly blogs.  I have submitted my first blog to the site editor, and it should show up on the site sometime soon.   I hope.

Until later!

Cheers, Ron


12 February, 2013

Tuesday, February 12th, 2013

On February 12, 1809, among many others, two human births occurred and stand out,  C. R. Darwin, and A. Lincoln.   I cannot think of another single day in recent history that was the birthday of two such influential individuals.  Of course, influence, like beauty, is in the eye of the beholder, but I am sure any reader would realize the immense, and positive, contributions of these two men.  Another malacologist, a casual acquaintance, sends out a Darwin quote on his birthday.  I think the one she sent out this year is worth repeating it here.

Happy Darwin’s Birthday!
“The lagoon-islands have received much the most attention; and it is not surprising, for every one must be struck with astonishment, when he first beholds one of these vast rings of coral-rock, often many leagues in diameter, here and there surmounted by a low verdant island with dazzling white shores, bathed on the outside by the foaming breakers of the ocean, and on the inside surrounding a calm expanse of water, which, from reflection, is of a bright but pale green colour.  The naturalist will feel this astonishment more deeply after having examined the soft and almost gelatinous bodies of these apparently insignificant creatures, and when he knows that the solid reef increases only on the outer edge, which day and night is lashed by the breakers of an ocean never at rest.”
From: Darwin, C. R. 1842. The Structure And Distribution Of Coral Reefs. Being The First Part Of The Geology Of The Voyage Of The Beagle, Under The Command Of Capt. Fitzroy, R.N., During The Years 1832 To 1836. London: Smith, Elder and Co. 214 pp.
Until later…
Cheers, Ron

7 February, 2013

Thursday, February 7th, 2013

Hi Folks,

To anybody that happens to actually be following my blog, let me apologise for the relative lack of posts over the last week or so.  I had lots of various chores to work up around here, and there were, as is becoming usual, some health issues.   My basic plan is to add one good sized post and a couple of short chatty posts per week.  If anybody comments, I will reply, of course, if it seems I should. 

After a bit of cold weather in early January, it appears that around here we are having an extended early spring.  We seem to be in a weather pattern having bright days with a high of about 40F (5 C) and a low of about 20 F (-6 C).  This pattern is far different than what it used to be at this time of year.  The highs are typically 40 deg F warmer than in the bad old days.  And our snow cover mostly isn’t.   We have scattered skiffs of crusty snow, but there is a lot of barren ground. 

Such a weather pattern is not good for our local vegetation – trees transpire away their moisture, but the ground remains frozen so they can’t replenish what is lost, and as a result, there is a lot of winter kill.   Also our snow cover is damnably low, which will give us a drought come summer.   But… I’ve got to say, even with all the negatives, I can do without the blistering cold.  Now, we certainly can – and probably will  – get some very cold periods before the definitive spring sets in, but the longer it stays the present version of nice, the better I will like it.

With the nice weather, we have been having a herd of furry birds hanging around eating the seed I put out for birds.   There is little forage for these animals, and I am quite worried about their survival.  About 15 years ago, we had a yearling fawn die of starvation in one of our flower beds, and that was a really sad thing to watch.  By the time she showed up in our yard she was too far gone for me to do anything except provide a quiet environment for her.   And then I had to dispose of the body.   She was less than half the normal weight for that time of year.

So far this year, though… so good.

Mom and her two kids last year's fawns,, resting by evergreens in our back yard.

Mom naps with her two kids, last year’s fawns, all resting by evergreens in our back yard.   This doe has distinctive markings, and I have photographs of her in our yard since 2002, when she was a half grown fawn.


Have a good one, if you can.

More later,

Cheers, Ron

Benthic Natural History In Cowlitz Bay, Waldron Island.

Monday, February 4th, 2013

Passing into deeper water from the eelgrass beds found in the shallow nearshore environments of many embayments of the American San Juan Islands, the highly organic muddy sand substrate is typically replaced by a less organic or “cleaner” mixture of sand and silt.  Such a transition is certainly the case in Cowlitz Bay of Waldron Island.  I can verify that the silty-sand substrate continues to, at least, a depth of 50 m (165 feet).   Except for emergent rocky outcrops, this habitat type is likely characteristic of all the deeper water of Cowlitz Bay and the nearby San Juan Channel and Boundary Passages.

The tidal ranges that distinguish this region, coupled with its geography, mean that high tidal currents are the norm, and the volume of tidal water movement is immense.  All of this, added to the dense, rich plankton found in those waters creates a habitat that is probably nearly optimal for suspension feeders.  As a result, virtually all of the hard subtidal real estate is occupied some sort of organism specialized to grab food or nutrients from the water moving past them.  Subtidal rocky substrates are often characterized by dense populations of suspension-feeding epifaunal sea cucumbers.  And, although it may seem unlikely, some of the unconsolidated, silty-sand, habitats are also dominated by dendrochirote holothurians, albeit in this case these cases they are infaunal, not epifaunal.  Infaunal sea cucumbers dominate the subtidal Cowlitz Bay benthic environment below 10 m.    

0 - Pentamera cf populifera 11vii77 6m Cowlitz Bay, Waldron Id. 01 Juveniles

Pentamera individuals extending from the bottom of Cowlitz Bay, 11 July, 1977.  The abundance of the adult animals exceeds 20,000/m2 (about 0.2 m2) is visible.

Pentamera sp. indivdiual with some of the many juveniles in the sediment circled.  Taken 11 July, 1977.

Pentamera sp. adult indivdiual with some of the many juveniles in the sediment circled. Taken 11 July, 1977.  The juveniles become evident in the sediments in early summer, indicating spawning likely occurs in the spring.

Although a few other species are rarely found, the vast majority of these suspension-feeding, infaunal cukes belong to a few species of Pentamera.  The individuals belonging to the different species are relatively similar in size, shape, and coloration making them effectively indistinguishable in the field by non-specialists, so I will refer to them all as Pentamera.  Living buried in the sediments they feed by extending a small portion of the oral end of the body above the sediments.  This exposes just a bit of the animal, primarily the mouth, and its surrounding crown of highly-branched feeding tentacles.   

White, and only about 2 or 3 cm long, these relatively small sea cucumbers are often found in beds so very dense that in the summer, the benthic sediment appears snow-covered due to the many tentacles visible.  In the clear water of the late autumn and winter plankton-free periods, these holothuroids do not feed.  Presumably quiescent, they remain buried under the sediment surface.  During these seasons, the habitat looks relatively barren; with only scattered larger animals, such as individuals of tube anemones, Pachycerianthus fimbriatus, orange sea pens, Ptilosarcus gurneyi, snake-skin stars, Luidia foliolata, sunflower stars, Pycnopodia helianthoides, or weather-vane scallops, Patinopecten caurinus being evident to the casual observer. 

Patinopecten caurinus, the Weather Vane Scallop, about 15 cm (6" in) in diameter. Photographed in the Summer (June, 1977).  Note the visible Pentamera cukes.

Patinopecten caurinus, the Weather Vane Scallop, about 15 cm (6″ in) in diameter. Photographed in the Summer (June, 1977) on the benthic subtrate of Cowlitz Bay; note the abundant Pentamera cukes.

Patinopecten caurinus.  Area as before, except it was photographed in the ealry winter (December, 1976).  Note the lack of visible cukes.

Patinopecten caurinus. Area as before, except it was photographed in the ealry winter (December, 1976). Note the lack of visible cukes.

With beginning of the diatom bloom starting in February, smaller life “returns to”, or more correctly, becomes evident again on the benthos.  The sediment becomes covered completely with a thick and rather ugly, dense dark brown film, consisting of several species of microalgae, primarily diatoms and dinoflagellates. 

Unidentified Polyclad Turbellarian, photographed in April, 1983.  The "black material" is the diatom film that is found in this area in the spring.

Unidentified Polyclad Turbellarian, anterior end to the left, photographed on April, 1983 on the substrate in Cowlitz Bay.  The “black material” is the diatom film that is found in this area in the spring.

By early March, many turbellarian flatworms of several visually distinctive types are commonly found gliding over the brown algal film and sediments.  These small worms, each only a few millimeters long, may be distinguished by their differing shapes and color patterns.  Although common, at least in the spring, virtually nothing is known of their natural history.  Shortly after the worms become common, small caprellid amphipods, otherwise known as “skeleton shrimp”, seem to appear out of nowhere and are soon found covering the diatom film.  These small, about a centimeter (0.4 inch) long, animals reproduce rapidly and soon reach abundances around 1 animal per square centimeter, or a density of 10,000 animals per square meter.  As they become common, pelagic predators, such as ctenophores and chaetognaths, may be observed grabbing copepods off the bottom and swimming back up into the overlying water.

A Sagitta (planktonic chaetognath carnivore) photograph near the bottom, hunting for caprellids.

A Sagitta (an almost completely transparent planktonic chaetognath and a predator normally on zooplankton) photographed near the bottom, where I have seen other individuals grab caprellids.

 By the middle of March, the spring plankton are in full bloom and the Pentamera are beginning to feed.  By moving up and down in the sediment, the resulting bioturbation soon destroys the diatom film, and the sediment becomes relatively clean again.  Snake-skin stars, Luidia foliolata, are common in this habitat where these sea cucumbers are their principal prey.  Caprellid amphipods, Caprella gracilior, and small hermit crabs are often seen on the aboral surface of the stars.  The Luidia-sized, star‑shaped, feeding depressions, along with the small piles of regurgitated remains attest to the star’s feeding habits.  Pycnopodia helianthoides is also commonly found in these beds and may also feed on the sea cucumbers.  Some aspects of the natural history of Luidia in this habitat will be discussed in subsequent post.

 Individuals of the large, up to 15 cm (6 inches) in diameter, weathervane scallops, Patinopecten caurinus, rather rare elsewhere in the San Juans, are found not uncommonly in these cucumber beds.  They are found lying in shallow, somewhat bowl-shaped, depressions probably created over time by the scallops’ feeding currents which might gently displace and excavate the sediments.  Eaten by the sunflower star, the scallops will swim in response to being touched by the predator.  They are not particularly vigorous swimmers, however, nor do they seem to start swimming immediately, thus they could be captured relatively easily.  Their shells are a common feature in this habitat, so presumably some predators are capturing them.  These large shells, either living or dead, provide about the only hard substrate in these habitats, and are often covered with barnacles, algae, or occasionally attached bryozoans or hydroids. 

Maroon more pachycerianthis

Both color varieties or “morphs” of  Pachycerianthus fimbriatus found in the benthos of Cowlitz Bay.

The tube-dwelling anemone, Pachycerianthus fimbriatus, is particularly common in this habitat, and becomes very abundant just below the dense Pentamera beds in the more silty habitats of the steeply sloping areas.  Pachycerianthus individuals may be colored either gray or a dark brown to maroon.  These do not appear to represent separate species, and the different colors have no known significance.  Close examination of the anemones will show some very small epifaunal, possibly stenothoid, amphipods visible as small dots moving over the anemone’s body and tentacles.  During the spring and early summer periods of dense plankton, it is possible to watch the Pachycerianthus catch copepods, and other small crustacean zooplankton, with their long tapering, thin, tentacles. 

An ectoparasitic or commensal stenothoid amphipod on a Pachycerianthus tentacle.  Assuming the tentacles are about the same size (and they are) compare this amphipod to the hyperiid amphipod captured as food by a different tube anemone (next illustration).

An ectoparasitic, or commensal, stenothoid amphipod on a Pachycerianthus tentacle.  Assuming the tentacles are about the same size (and they are) compare this amphipod’s size to that of the hyperiid amphipod captured as food by a different tube anemone (next illustration).

A small Pachycerianthus fimbriatus with a captured planktonic hyperiid amphipod (arrow).

A small Pachycerianthus fimbriatus with a captured planktonic hyperiid amphipod (arrow).

 These slightly deeper habitats where Pachycerianthus is most common, ranging downward from about 10m (33 feet) in depth, have a silty sand substrate.  Pentamera are found in these regions, they are just not as abundant as they are in the dense assemblages in shallower water.  Individuals of the orange sea pen, Ptilosarcus gurneyi, are well represented in these deeper habitats, and although they are not as abundant here as they are in the dense sea pen beds of the lower Puget Sound region, they are nonetheless found relatively frequently.  Occasionally, a different type of pennatulacean, a sea whip, may be found.  In the genus Virgularia, these whips are narrow pennatulaceans, with short “leaves”.   At least two species within this genus found in our waters and they are not terribly difficult to distinguish in the field.  The species found in Cowlitz bay is small, tan to whitish, with small “leaves” and is seldom over 15 cm (6 inches) in height.  The feeding zooids often appear to arise from directly from the central stalk.   The other species, found in other areas, such as Lopez Sound, is larger and more robust, pink to orange, and often reaches heights of 50 or more centimeters.  This species has larger relatively distinct “leaves” with the gastrozooids on them. 

A small, about 8 cm (3.5 in) high, pennatulacean, probably a species of Virgularia.

A small, about 8 cm (3.5 in) high, pennatulacean, probably a species of Virgularia.

 Several nudibranch species are also found in these areas, most of which are probably preying on the cnidarians.  The largest and most evident of these are individuals of Dendronotus iris.  These are amongst the largest local snails; in this area they often reach lengths exceeding 25 cm (10 inches) which is probably due to the high abundances of their preferred prey, the Pachycerianthus anemones.  They approach the anemones by slowly crawling under the tentacle crown, to where the anemones extend from their tube.  They, then, reach up rapidly, bite, and hang on to either a mass of tentacles or even the anemone’s column.  Generally, the Pachycerianthus rapidly withdraws into its tube when it is bitten, and in these cases, it often pulls the predator in with it.  Sometime later, the Dendronotus iris often crawls out of the now empty tube, and may set off in search of another anemone.  The nudibranch may, at times, lay its loosely coiled egg masses attached to the Pachycerianthus tube, bits of shell, or just bits of the sediment.

0 - Dendronotus iris Cowlitz Bay, Waldron Id. -7m 11vii77 WA 01

A 10 cm (4 inch) long Dendronotus iris in Cowlitz Bay. Photographed at a depth about 7 m. This large nudibranch reaches over 30 cm (12 inches) in length, and eats Pachycerianthus. 

Other nudibranch specimens are found in the area, and they can be relatively common at certain times of the year.  Dendronotus albus specimens will be found occasionally, preying on those few hydroids that are found attached to the shell fragments or other hard substrata present on the sediment surface.  These nudibranchs are slender and may reach lengths of about 10 cm.  The basic ground color is white, but the tips of the branched cerata are tipped in orange.  Individuals of another dendronotid, Dendronotus albopunctatus, are often abundant in the spring.  These animals are brown to pink and freckled with small light dots.  They only reaches lengths of 2 to 3 cm (up to about 1.5 inches), but they are recognizable by their somewhat “oversized”, relatively large, “front” cerata, which are often about a centimeter in length.  Little is known of the natural history of this species, although it is likely a predator on small cnidarians.

Dendronotus albus.

Dendronotus albus is a not uncommon, small, about 3 cm, (1.2 inches) long, nudibranch in habitats such as those found in Cowlitz Bay.  It eats hydroids, as this individual was doing when photographed

0 - Dendronotus albopunctatus Cowlitz Bay, Waldron Id. -9m 28iv83 WA 01

Dendronotus albopunctatus, about 3 cm (1.2 inches) long on the sediment of Cowlitz Bay.  It also has been seen to eat hydroids.

0 - Acanthodoris brunnea, Cowlitz Bay, Waldron Id.,  -9m, 13v86  WA 01

Acanthodoris brunnea, about 2 cm (0.8 inch) long, photographed on the sediment of Cowlitz Bay.  Reported to eat bryozoans, this dorid species is found on muddy-sand, a habitat notably lacking in bryozoans.  In this region and habitat, it is likely eating something other than bryozans.

Acanthodoris brunnea is another nudibranch species that is somewhat common at times in this habitat; little is known of its natural history.  These animals are small dorids, roughly the same size as Dentdronotus albopunctatus, reaching lengths of 2 to 3 cm (up to about 1.5 inches).  Their basic coloration is brown; the individuals are covered with distinctive relatively large papillae on the back.   This species is considered to be predatory on bryozoans, but that is unlikely in this region as bryozoans are exceedingly rare in this habitat.

Also found in these areas are pennatulid-eating nudibranchs in the genus Tritonia.  The most abundant of these are individuals of the small white Tritonia festiva, described in the earlier post on sea pen beds.  Here, as well, T. festiva individuals seem to prey on Ptilosarcus.  Individuals of the larger, orange nudibranch, Tritonia diomedea, are also occasionally seen in these areas.  They seem to prefer the larger Virgularia as prey.  

Large shelled gastropods are relatively rare in this particular habitat, although several smaller species can be very abundant.  Perhaps the largest commonly found gastropod, and certainly one of the most beautiful, is the wentletrap,  Epitonium indianorum.  These animals are often found buried near to the bases of the tube anemones upon which they feed.  As with most snails, wentletraps have a feeding organ called a radula; unlike the “classic” gastropodan radula which functions something like a rasp, filing off pieces of tissue, the wentletraps’ radulae are highly modified and look like an inverted thimble lined on the inside with sharp teeth.   A wentletrap crawls up to the anemone and pokes the anemone with its radula everting the “thimble” in the process.  This turns the radula inside out, which in turn, carves a circular hole in the tissues on the side of the anemone.   The lacerated tissues are eaten, and the snail extends its proboscis which has the radula on its tip through the hole and proceeds to use the radula to cut up and eat other internal anemone tissues.  These snails reach lengths of 3 cm or more, and don’t seem to move much once they have found an anemone to feed on.  It is recognized by the distinct axial ribs, the rounded aperture, and the relatively high spire.

 One cephalopod can be relatively common in the lower slope areas, the Pacific Bob‑Tailed Squid, Rossia pacifica.  This small benthic squid lives buried in the bottom during the day.  If a diver is careful, they can sometimes see the slight depression that the Rossia occupies, and then can make out the eyes watching him.  The hole for the siphon is generally visible and if approached carefully, one can see the regular breathing movements of the mantle.  Rossia pacifica reaches lengths of about 10 cm, and seems to live about a year or eighteen months.  They have an interesting, stereotyped, escape response which I have described, briefly, in a previous post.  This small squid preys on small shrimps, crabs, and fishes, and is a nocturnal hunter.

Well, that’s enough for now… :-)

More later,

Cheers, Ron